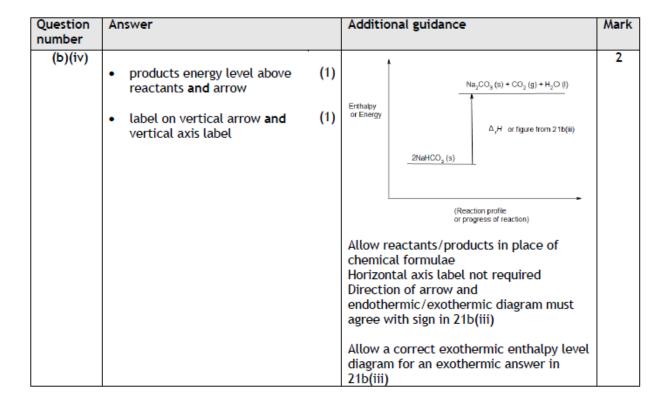
Energetics - Mark Scheme


Q1.

Question number	Answer	Additional guidance	Mark
(a)	 hard to measure the temperature change when you're heating something or heat losses due to high temperatures involved or at 300 °C/high temperatures the water will be gaseous 	Allow it is difficult to measure the temperature of a solid	1

Question number	Answer	Additional guidance	Mark
(b)(i)	An answer that makes reference to the following points: • (the enthalpy change when) one mole of the substance (is formed) • from its elements in their standard states (under standard conditions).		2

Question number	Answer		Additional guidance	Mark
(b)(ii)	A diagram that includes: all species correct all state symbols correct and	(1)	$2NaHCO_3(s)$ \rightarrow $Na_2CO_3(s) + CO_2(g) + H_2O(l)$	2
	species balanced.	(1)	2Na(s) + H ₂ (g) + 2C(s, graphite) + 3O ₂ (g) Do not penalise missing graphite	

Question number	Ar	nswer		Additional guidance	Mark
(b)(iii)				Example of calculation:	4
	•	correct application of Hess's law	(1)	$\Delta_r H = -\Delta H_1 + \Delta H_2$ or $\Delta_f H$ (Na ₂ CO ₃) + $\Delta_f H$ (CO ₂) + $\Delta_f H$ (H ₂ O) = $2\Delta_f H$ (NaHCO ₃) + $\Delta_r H$	
	•	correct figures used	(1)	$-1130.7 + (-285.8) + (-393.5) = 2 \times (-950.8) + \Delta_r H$ $\Delta_r H = 91.6$	
	•	correct calculation	(1)	$\Delta_r H = +91.6 \text{ kJ mol}^{-1}$	
	•	units and sign	(1)	Correct answer with no working scores (4) TE from M1 TE from incorrect M2	

Q2.

	Question number	Answer	Mark
ſ	(a)	A 2.5℃	1

Question number	Answer	Mark
(b)	C redox	1